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Abstract. We consider the rate equations for a laser with an intracavity saturable absorber and subject
to a periodically modulated pump. By deriving simplified equations for a map valid for strongly pulsating
regimes, analytical conditions are determined that specify the properties of both frequency-locked and
unlocked behaviors. As the strength of the modulation is increased, quasiperiodic and period-doubling
bifurcations are predicted. However, only the transition from locking to non-locking through a quasiperiodic
bifurcation is possible for realistic values of the parameters. Our results are consistent with previous
numerical and experimental studies of modulated lasers with a saturable absorber.

PACS. 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity,
and optical spatio-temporal dynamics – 42.60.Fc Modulation, tuning, and mode locking –
42.60.Gd Q-switching

1 Introduction

Lasers with an intracavity saturable absorber (LSA) have
long been used to generate high-intensity pulses (see [1–4]
for background and historical references). The absorber
acts to limit the light output and hence prevent deple-
tion of the active media. However, a threshold is reached
such that the absorber becomes transparent and allows
a rapid depletion of the now very strong population in-
version and the emission of a pulse. The effect is simi-
lar to “Q-switching” the laser-cavity losses and hence the
LSA is said to exhibit a “passive Q-switch” (PQS) be-
havior. The PQS output is of practical interest for ap-
plications that require extremely short (< 1 ns) high-
peak-power (> 10 kW) pulses of light. The short pulse
widths are useful for high-precision optical ranging with
applications in automated production. The high peak out-
put intensities are needed for efficient nonlinear frequency
generation or ionization of materials, with applications in
micro-surgery and ionization spectroscopy. Combined the-
oretical and experimental studies of PQS first considered
gas lasers [5,6] and then concentrated on microchip solid
state lasers and semiconductor lasers. Microchip lasers are
small, easy to manipulate and offer high performances
for the pulse width and/or peak-power [7,8]. Self-pulsing
semiconductor lasers exhibit a high repetition rate which
ranges from hundreds of megahertz to a few gigaHertz [9,
10]. They are interesting for telecommunication and for
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optical data storage using compact disc (CD) or digital
versatile disc (DVD) systems [11–17].

Frequency jitter (stochastic variations in the fre-
quency) in oscillating systems such as the LSA can be re-
duced by frequency-locking the system to an external drive
source with more stable periodic output [18–20]; in lasers,
this is often referred to as “linewidth narrowing”. The goal
of achieving linewidth narrowing has motivated a number
of studies of the “modulated LSA” (LMSA) [12,18–22].
In these works, the frequency-locking characteristics and
the unlocked behavior of the LMSA have been investi-
gated both numerically and experimentally. The unlocked
behavior includes quasiperiodic output and chaos. Prac-
tically, we would like good locking properties for stable,
tunable laser outputs. The interest of periodically modu-
lated LSA for applications, the experimental observation
of complex dynamics, and the numerical simulation of
these phenomena using rate-equations, motivate analyt-
ical studies.

The main objective of this paper is to derive simple
conditions that describe the locking region of the LMSA
as a function of the modulation amplitude and frequency.
These conditions show a variety a locking possibilities,
emphasize the role of certain parameters, and predict bi-
furcation points possibly leading to complex (chaotic) dy-
namics. The formulation of the LSA dimensionless equa-
tions depends on the type of laser but is documented in
the literature. See, for example, references [5,6] for CO2

lasers, reference [24] for self-pulsating diode lasers, and
reference [30] for microchip solid state lasers. The LMSA
two-level atoms rate equations for the intensity of the laser
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field I and the population inversions of the active and pas-
sive regions, D1 and D2, are given by

dI
dt

= [D1 +D2 − 1]I,

dD1

dt
= γ1[A1(1 + δ cos(ωt))− (1 + I)D1]

dD2

dt
= γ2[A2 − (1 + aI)D2]. (1)

The parameters γ1 and γ2 are the decay rates of D1

and D2 normalized by the cavity decay rate, respectively.
A2 < 0 is defined as the absorber pump parameter and
a describes the relative saturability of the absorber with
respect to the active media. The first term in the equa-
tion for D1 models a periodically modulated pump pa-
rameter where A1, δ and ω represent its averaged value,
its modulation amplitude, and its normalized modulation
frequency, respectively. Typical values of the laser param-
eters are documented in [5,6] for CO2 lasers, in [23] for
microchip solid state lasers, and in [24] for semiconductor
lasers. The range of values of these parameters may de-
pend on the type of laser but they all exhibit small values
of γ1 and γ2 (10−5 to 10−3). The strongly pulsating be-
havior of PQS is directly related to these small values of
γ1 and γ2 [29]. For self-pulsing semiconductor lasers, (1)
needs to supplemented by additional terms modeling non-
linear gain saturation, nonlinear damping of D1 and D2,
and cross-diffusion of the carriers between active and pas-
sive regions. However, none of these additional effects are
responsible for the generation of PQS [24]. Self-pulsation
appears through a bifurcation mechanism which we briefly
review. If δ = 0, the domain of pulsating intensities is
bounded by either the laser first threshold and a Hopf
bifurcation point or by two Hopf bifurcation points. In
the latter case, the low intensity Hopf bifurcation point
is located very close to the laser first threshold and the
leading approximation of the domain of self-pulsation is
mathematically the same for both cases in the limit of
small values of γ1 and γ2. In terms of A1, the domain of
self-pulsation is approximately given by

Ath < A1 < AH (2)

where Ath ≡ 1−A2 is defined as the laser first threshold
and AH corresponds to a high intensity Hopf bifurcation
point; the expression for AH is not needed for our anal-
ysis. The laser intensity oscillations are strongly pulsat-
ing near Ath and exhibits long interpulse periods. They
progressively become smoother as we increase A1 and ap-
proach AH.

Equation (1) simplifies if we adiabatically (γ2 � γ1)
eliminate D2. From equation (1), we then obtain the fol-
lowing two equations

dI
dt

=
[
D +

A2

1 + aI
− 1
]
I,

dD
dt

= γ[A(1 + δ cos(ωt))− (1 + I)D] (3)

where D = D1, γ = γ1 and A = A1. Equation (3) is stud-
ied in detail in [22] and has been shown to possess many

dynamical features of equation (1). An adiabatic elimi-
nation of D2 is also proposed in [19] from the four-level
atoms rate equations. We have studied the PQS regimes of
both equation (1) and equation (3) and did not find qual-
itative differences for the PQS locking conditions. In this
paper, we concentrate on the pulsating solutions of equa-
tion (3) appearing for γ small. In this limit, the domain
of pulsating intensities is given by (2) where Ath = 1−A2

and AH ≈ [−A2/(aγ)]1/2.
Lauterborn and Eick [22] have shown that the LSA

equations can be written as a perturbed Hamiltonian. This
suggests the possibility of using methods such as averaging
or subharmonic-Melnikov theory [26,27] to analyze the
LMSA. However, the dissipation is not uniformly small
over the complete period of the orbit, and this prevents
the use of the averaging type methods.

Our analysis will make explicit use of the pulsating
nature of PQS where the high-intensity pulses are fol-
lowed by a long time during which the intensity is close to
zero. By using the method of matched asymptotic expan-
sions [28], we obtain asymptotic approximations to the dy-
namics in each regime. This enables us to construct a map
for the amplitude and period from one pulse to the next.
Fixed points of the map then correspond to frequency-
locked solutions of (3).

The derivation of the map is given in Section 2 and
the analysis of its fixed points is described in Section 3.
In Section 4, we discuss the physical implications of our
results.

2 A map describing PQS with modulation

To analyze the LSA in the regime of PQS, we take advan-
tage of the fact that the high-intensity pulses are followed
by a period during which the intensity is nearly zero. We
will use different asymptotic approximations for (3) to an-
alyze each regime in the spirit of “boundary-layer” analy-
sis [28]. This approach has been used to analyze the period
and maximum amplitude of the free PQS in [29,30]. Our
problem is however more complicated because we consider
a time-periodic pump. For the simpler problem of a mod-
ulated class-B laser, this has been done in [31,32]. The
results of the analysis are given by equations (8, 9) for the
“MPQS-map”. This map determines the time Tn+1 and
inversion Dn+1 of the next pulse given Tn and Dn of the
present pulse. Increasing n allows us to determine how the
period of the pulses and the inversion (from which we can
determine the intensity) evolve in time. Since the mathe-
matical analysis is similar to the one described in [29], we
only emphasize the analytical differences.

2.1 The interpulse regime

We first investigate the interpulse regime during which
I � 1 and D increases from D(T0) to D(T1) (Fig. 1).
In (3), we let T ≡ γt and assume I � 1. The equation for
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Fig. 1. PQS limit-cycle in the phase plane (I,D). A com-
plete orbit starts at D(T0) and finishes at D(T2). It consists
of the interpulse regime where D slowly increases from D(T0)
to D(T1) (I � 1) followed by the pulse regime where D(T1)
quickly changes to D(T2) (I � 1).

D is then linear, in first approximation, and integrating
from T0 to T , we find

D(T ) = A(1 +R cos(ΩT + φ))

+ [D(T0)−A(1 +R cos(ΩT0 + φ))]e−(T−T0) (4)

where Ω ≡ ω/γ, R ≡ δ(1 + Ω2)−1/2 and φ satisfies the
equation tan(φ) = −Ω. We next substitute the expres-
sion (4) into the right hand side of the equation for I,
assume I � 1 again, integrate and obtain

γ ln
[
I(T )
I(T0)

]
= (A−Ath)(T − T0)

+ [D(T0)−A(1 + R cos(ΩT0 + φ))]
(

1− e−(T−T0)
)

+
AR

Ω
(sin(ΩT + φ)− sin(ΩT0 + φ)) (5)

where Ath = 1 − A2. During the interpulse regime, the
right hand side of equation (5) is negative and I(T )
remains exponentially small. This regime ends at time
T = T1 when I(T1) = I(T0). Using (5), we obtain the
following implicit equation for T1 (A−Ath)(T1 − T0)

+[D(T0)−A(1+R cos(ΩT0+φ))](1−e−(T1−T0))
+AR

Ω (sin(ΩT1 + φ)− sin(ΩT0 + φ))

= 0.

(6)

2.2 The pulse regime

The slow interpulse regime is followed by a quick and in-
tense pulse. However, the modulations do not perturb the
pulse in first approximation. Consequently, our analysis
will be identical to the analysis of the free PQS pulse [29].
Integrating in the phase plane leads to an equation de-
scribing the quick change of D from D(T1) to D(T2)
(Fig. 1). This equation is given by

ln
[
D(T2)
D(T1)

]
− (D(T2)−D(T1)) = 0. (7)

2.3 The equations for a map

Equations (4, 6, 7) are used to construct a map describing
the PQS dynamics in the form (Tn, Dn) 7→ (Tn+1, Dn+1).
The map iterates (Tn, Dn) defined as the time and the
value of the inversion at the end of each pulse, e.g. D(T0),
D(T2), etc., see Figure 1. Given T0 and D(T0), we first
obtain T1 and D(T1) from equations (6, 4), respectively.
The initial conditions for the next pulse are then T2 ≈ T1

and D(T2) obtained from (7). This leads to the following
two equations relating Tn+1, Tn, Dn+1 and Dn

Tn+1 = Tn + P (Tn, Dn), (8)

ln
[

Dn+1

G(Tn, Dn)

]
− [Dn+1 −G(Tn, Dn)] = 0. (9)

P is the period of one complete orbit and G ≡ D(T1).
They satisfy transcendental equations given by (6) and
by (4) evaluated at T = T1:

0 = (A−Ath)P+[Dn−A(1+R cos(ΩTn + φ))](1−e−P )

+
AR

Ω
[sin(Ω(Tn + P ) + φ)− sin(ΩTn + φ)], (10)

G = A[1 +R cos(Ω(Tn + P ) + φ)]

+[Dn −A(1 +R cos(ΩTn + φ))]e−P . (11)

The equations for the map look complicated but consider-
able progress has been achieved. Pulsating periodic solu-
tions of the LMSA problem now correspond to fixed points
of these equations. Furthermore, these equations consider-
ably simplify for the fixed points as we shall demonstrate
in the next section. Note that parameter a do not appear
in the leading equations for the map. Consequently, the
map ignores the upper Hopf bifurcation point and is es-
sentially valid near the laser threshold.

3 Fixed points

We look for fixed points of the form

Tn = nTf + T0 and Dn = Df . (12)

From (8) we find the condition

Tf = P (nTf , Df). (13)
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But for frequency locking, the period P must be indepen-
dent of n in equation (10), which implies the condition

Tf = P =
2πm
Ω
· (14)

Thus, Tf is determined by the forcing frequency Ω. Note
that with (14), equation (10) for P = Tf simplifies as

0 = λTf + [Df −A(1 + R cosΦ)](1− exp(−Tf)), (15)

where λ ≡ A − Ath and Φ ≡ ΩT0 + φ. Using (15), equa-
tion (11) also simplifies and gives

Gf = Df + λTf . (16)

In order to find Df , we substitute (16) into equation (9)
and solve for D. We find

Df =
λTf

eλTf − 1
· (17)

Finally, Df is introduced into equation (15) and solving
for Rcos(Φ), we determine a relation between the forcing
amplitude δ = R(1 +Ω2)1/2 and period Tf given by

δ cos(Φ) = δSN ≡
[

1 +
(

2πm
Tf

)2
]1/2

×
[
−1 +

λTf

A

(
eλTf − e−Tf

(1− e−Tf )(eλTf − 1)

)]
· (18)

Equations (14, 18) define fixed points of the map, i.e., a
possible solution for the unknown phase Φ. If T = TLC de-
notes the period of the free PQS limit-cycle, TLC satisfies
equation (15) with R = 0. For large values of Tf and TLC

(λ fixed), equation (18) simplifies as

δ cosΦ ' λ

A

[
1 +

(
2πm
Tf

)2
]1/2

(Tf − TLC) (19)

which we recognize as the steady Adler’s equation [33,34]
for steady state locking in a laser subject to injection. If
the detuning Tf − TLC is too large or if the modulation
amplitude δ is too small, equation (19) does not admit a
solution and frequency-locking is not possible. The limit
λ small and Tf = O(λ−1) large of equation (18) (near
threshold conditions) is studied in detail in the Appendix.

There are different ways of analyzing equation (18)
which we now describe.

3.1 Changing the laser limit-cycle frequency

We keep δ fixed and consider the laser operating at Φ = 0.
By changing λ = A − Ath, we change TLC defined as the
natural period of the laser. In order to maintain lock-
ing, the modulation frequency then needs to be changed.
From (18), we determine Tf and in Figure 2, we represent
Tf = 2πm/Ω as a function of λ. Note that Tf needs to be
large for low values of λ because TLC becomes large as the
pump parameter comes close to threshold.

Fig. 2. For fixed δ, the period Tf as a function of λ = A −
Ath (A2 = −3.4375). When λ → 0+ the system approaches a
homoclinic solution.

Fig. 3. Primary (m = 1) frequency locking region for different
operating conditions (different λ). For a fixed δ = 0.4, Tf is
in the interval Tf ∈ [Tm, TM ] as Φ decreases in the interval
Φ ∈ [π, 0] (A2 = −3.4375).

3.2 Changing the modulation frequency

We consider all parameters fixed except for the phase Φ
and the modulation frequency Ω. Locking is possible if
there exists a value of 0 ≤ Φ ≤ π satisfying equation (18).
In Figure 3, we consider the case m = 1 and show the
locking region for two values of λ. The possible solutions
are bounded by Tf = Tm when Φ = π and by Tf = TM
when Φ = 0. Furthermore, Tf = TLC when Φ = π/2 and
from this point emerges two lines. The change in the phase
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Fig. 4. Frequency-locking regions for (a) λ = 0.40 (b) λ =
0.85 and several resonances (m = 1, 2 and 3). Quasiperiodic
behavior occurs outside the Arnold tongues.

with respect to the locking frequency Ω has been observed
experimentally by Egan et al. [21].

In Figure 4, we show the well known “Arnold
tongues” [26] corresponding to different values of m (dif-
ferent resonances). For λ = 0.40 (Fig. 4a) we let Tf =
2πm/Ω, m = 1, 2, 3 in (18). For fixed m the curves de-
fine Ωm and ΩM on the left and right, respectively. Out-
side the Arnold tongues, the LMSA exhibits quasiperiodic
behavior.

Recall from Figure 2 that the laser’s natural frequency
is highly tunable with λ. This greatly affects the qualita-
tive nature of the Arnold tongues. For low values of λ, the
unforced laser is in the highly pulsating regime. Here the
Arnold tongues are shifted to lower frequencies, are nar-
rower, and are more closely spaced. On the other hand, if

Fig. 5. For fixed λ and period Tf = 2π/Ω = 25, frequency
locking occurs at a minimum value δ = δSN and phase Φ = 0.
As δ is further increased the phase adjusts to maintain locking.
The solid (dashed) curve indicates stable (unstable) solutions
(A2 = −3.4375).

λ is moderate (see Fig. 4b), the Arnold tongues shift to
the right, are wider, and are spaced further apart.

3.3 Changing the modulation amplitude

We may investigate the behavior of the fixed points as
a function of the modulation amplitude δ keeping Ω =
2πm/Tf fixed. The bifurcation equation is given by

δ cos(Φ) = δSN (20)

where δSN is defined by (18). For a given frequency and
operating conditions, δ = δSN represents the minimum
value of the modulation amplitude above which locking
occurs. Our discussion of (20) will assume that δ is in-
creased through the left boundary of the Arnold tongue
when Φ = 0 and δ = δSN.

The boundaries of the Arnold tongues in Figure 4 in-
dicate δSN as a function of Ω. For δ < δSN, we expect a
quasiperiodic behavior. For δ ≥ δSN, we expect a periodic
behavior as the phase Φ adjusts to maintain the desired
frequency according to the bifurcation equation (20). Fig-
ure 5 shows the bifurcation from the left boundary of the
Arnold tongue where Φ ∈ (−π/2, π/2) (Φ ∈ (π/2, 3π/2)
on the right boundary). A linear stability analysis (see be-
low) confirms that δSN is a saddle-node (SN) bifurcation
point. We also find that as δ is further increased, a period
doubling (PD) bifurcation is possible.

3.4 Linear stability of the fixed points

The linear stability of the fixed points is investigated by
introducing the small perturbations tn and dn defined as
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Fig. 6. Eigenvalues of linear-stability analysis for λ = 0.1,
Tf = 50 and m = 1 (Ω = 2π/Tf = 0.1257). The two eigenvalues
are r1 = 0 and r2 given by (33).

tn ≡ Tn − (nTf + T0) and dn ≡ Dn −Df . The linearized
problem for (tn, dn) has the form

tn+1 = m11tn +m12dn,

dn+1 = m21tn +m22dn (21)

where the coefficients mjk are documented in the Ap-
pendix for A close to Ath. Again, we only discuss the
left boundaries of the Arnold tongues, the discussion for
the right boundaries being equivalent. Figure 6 gives the
eigenvalues computed numerically. The figure shows that
one eigenvalue is almost zero. We note that the second
eigenvalue crosses 1 at Φ = 0 with non-zero slope and
therefore determines the SN bifurcation. The same eigen-
value crosses −1 when Φ is on the stable branch of node
solutions, indicating a flip bifurcation. In the Appendix,
we investigate this eigenvalue in detail in the case A close
to Ath and show this flip bifurcation occur only for large
amplitude of the modulations.

4 Discussion

By constructing a map based on the pulsating nature of
PQS, we have analyzed the effect of periodic modula-
tion. In particular, we have determined analytical condi-
tions for the frequency-locking regimes, identified several
Arnold tongues, and analyzed their linear stability prop-
erties. Outside the locking regions, the LMSA exhibits
quasiperiodic solutions characterized by two frequencies,
namely the frequency of the modulations and the detun-
ing between the natural frequency of the laser and the fre-
quency of the forcing. Quasiperiodic solutions correspond
to non-fixed-point trajectories of the MPQS map. The
properties of the frequency-locked (periodic) and unlocked

(quasiperiodic) LMSA described by the MPQS-map have
previously been observed in experiments and numerical
simulations [12,18,19,22]; the MPQS-map provides useful
formulas for how these behaviors depend on the parame-
ters.

The equations of the map are valid provided the inten-
sity is pulsating which is typically the case near the first
laser threshold. Detailed comparisons between the solu-
tion of the full laser equations and the solution of the map
have been done in the case of the free laser (see, for exam-
ple, Fig. 3 in [23]) but have not been undertaken for the
forced laser problem. Excellent agreement between these
solutions has been observed in the free laser case provided
that γ1 and γ2 are O(10−3) or less which is the case for
most LSAs. Noise has been ignored in all our analysis.
Its effect is important and is documented in the litera-
ture (see, for example, [13,35]). If its amplitude is typi-
cally larger than exp(−1/γ1), noise dramatically reduces
the size of the pulsating oscillations. But the properties
of these oscillations (maximum intensity and interpulse
period) in terms of the fixed laser parameters are well de-
scribed by the equations of the map.

In this paper we concentrated on the two-variable
LMSA problem (3) when γ2 � γ1, which is valid for gas
and solid-state lasers, including microchip lasers. For semi-
conductor lasers when γ2 ≈ γ1 the analysis must start
from equations (1). We have also derived the map appro-
priate for this case and found that the results are equiva-
lent to those describe by the MPQS-map (8–11).

Of particular importance is the sensitivity of the
LMSA if it is tuned close to threshold, i.e., A ≈ Ath such
that the PQS output is high intensity and long period.
In this regime, the Arnold tongues are very close together
with respect to the forcing frequency; a slight change in
the forcing frequency can cause locking to PQS of a dif-
ferent period. Also, the overlap of the tongues occurs for
low forcing amplitude indicating the emergence of com-
plex dynamical behavior.

The linear stability of high-intensity long-period PQS
indicates that a PD bifurcation may occur if Φ ≈ π/2
which requires a very large forcing amplitude δ � 1 (for
fixed forcing frequency δ cos(Φ) = δSN). It is easy to
tune the parameters such that overlap with one of the
other locking regions occurs before the PD bifurcation
is reached; in this case quasiperiodic and other complex
behavior may be exhibited instead of the usual period-
doubling sequence to chaos. This is exactly what has been
observed experimentally for modulated CO2 lasers with a
saturable absorber [36]. Finally, for δ = O(1) before any
of these instabilities are reached, the linear-stability anal-
ysis shows that the LMSA is weakly stable with the eigen-
value for the map very close to one. Thus, in the pulsating
regime close to Ath, the LMSA is likely to be sensitive to
noise or other perturbations in its locked regime.

The well-known “circle map” [26] given by

θn+1 = θn +Ω +
K

2π
sin(2πθn), (22)

is the simplest map that characterizes a system exhibiting
both periodic orbits and quasiperiodicity [26]. However,
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Dangoisse et al. [19] have noted that the circle map does
not capture all of the observed dynamics in experiments
with LMSA. The MPQS-map (8–11) is specific for the
LMSA and can be reduced to the Circle map as a special
case. For large period orbits P � 1 (Ω � 1), Dn is nu-
merically small (Dn is the minimum value). Assume also
the solution is nearly periodic so that Tn ≈ (2πm/Ω)n.
Then from (10), we find

P ≈ A

A−Ath
(1 + δ cos(ωTn + Φ))

from which we obtain the circle map as

Tn+1 = Tn +
A

A−Ath
[1 + δ cos(ΩTn + Φ)], (23)

with winding number proportional to A/(A − Ath). As
A→ Ath the period becomes infinite as expected near the
homoclinic orbit.
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Appendix: Linear stability of the fixed points

The linearized problem (21) exhibits complicated coeffi-
cients which we shall not detail. The analysis of the lin-
earized problem is however much simpler if we consider
λ = A − Ath small which is the domain of interest for
strongly pulsating PQS regimes. Specifically, we assume
the scaling

Tf = O(Ω−1), λ = O(Ω) (24)

as Ω → 0. The equations for the map are given by (8)
and (9) where P and G satisfy equations (10, 11). Neglect-
ing the exp(−Tf) small terms, these equations simplify as[

λP +Dn −A(1 +R cos(ΩTn + φ))
+AR

Ω [sin(Ω(Tn + P ) + φ)− sin(ΩTn + φ)]

]
' 0, (25)

and

G ' A[1 +R cos(Ω(Tn + P ) + φ)]. (26)

The fixed points solutions are given by equations (16–18)
which simplifies as

R cos(Φ) = −1 +
λTf

Ath

exp(λTf)
exp(λTf)− 1

· (27)

The linearized problem for the deviations tn ≡ Tn−(nTf +
T0) and dn ≡ Dn −Df is now given by

tn+1 = (1 + PT )tn + PDdn,

dn+1 = α [GT tn +GDdn] (28)

where PT , PD, GT , GD denote partial derivatives of P
and G with respect to Tn or Dn. They are defined by

PT = − AthRΩ sin(Φ)
λ+AthR cos(Φ)

,

PD = − 1
λ+AthR cos(Φ)

,

GT = −AthRΩ sin(Φ)(1 + PT ),
GD = −AthRΩ sin(Φ)PD . (29)

α is a function of Tf given by

α =
exp(λTf)− 1− λTf exp(λTf)
exp(λTf) [exp(λTf)− 1− λTf ]

· (30)

The solution of equation (28) is of the form tn = prn

and dn = qrn and r satisfies the following characteristic
equation

r2 − r(1 + PT + αGD) = 0 (31)

which admit the solutions

r1 = 0,
r2 = 1 + PT + αGD. (32)

Using equations (29, 30), the second root can be rewrit-
ten as

r2 = 1−Ω tan(Φ)
[1− exp(λTf)]

2

exp(λTf) [exp(λTf)− 1− λTf ]
· (33)

r2 is clearly equal to 1 if Φ = 0 where the SN bifurcation
point is located. A flip or period doubling bifurcation is
possible if r2 = −1. However, because the second term
in (33) is proportional to Ω, the bifurcation is only pos-
sible if Φ is close to π/2, meaning large R (large mod-
ulation amplitude δ). Introducing Φ = π/2 + ΩΦ1 into
equation (33) with r2 = −1 and simplifying leads to a
critical value of Φ1.
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